Complexity and computation of connected zero forcing
نویسندگان
چکیده
منابع مشابه
Complexity and Computation of Connected Zero Forcing
Zero forcing is an iterative graph coloring process whereby a colored vertex with a single uncolored neighbor forces that neighbor to be colored. It is NP-hard to find a minimum zero forcing set – a smallest set of initially colored vertices which forces the entire graph to be colored. We show that the problem remains NP-hard when the initially colored set induces a connected subgraph. We also ...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولOn the Complexity of the Positive Semidefinite Zero Forcing Number
The positive zero forcing number of a graph is a graph parameter that arises from a non-traditional type of graph colouring, and is related to a more conventional version of zero forcing. We establish a relation between the zero forcing and the fast-mixed searching, which implies some NP-completeness results for the zero forcing problem. For chordal graphs much is understood regarding the relat...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملForcing highly connected subgraphs
By a theorem of Mader [5], highly connected subgraphs can be forced in finite graphs by assuming a high minimum degree. Solving a problem of Diestel [2], we extend this result to infinite graphs. Here, it is necessary to require not only high degree for the vertices but also high vertex-degree (or multiplicity) for the ends of the graph, i.e. a large number of disjoint rays in each end. We give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2017
ISSN: 0166-218X
DOI: 10.1016/j.dam.2017.05.016